ALG III 3/19/18

Natural Logarithm and Base e

WarmUp:

You invest \$1 at a 100% interest rate for one year. You can't remember how often the interest is compounded. You are curious as to whether there is a maximum amount of money you could have at the end of the year.

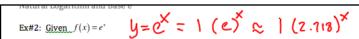
Complete the table.

Interest is Compounded	7	$\left \left(1 + \frac{1}{1} \right) \right $
annually	1	2.25
semiannually	2	2.25
quarterly		
bimonthly		
monthly		
weekly		
daily		
hourly		
each minute		
each second		

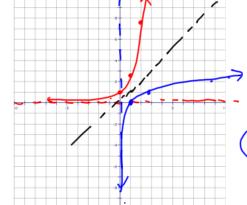
So as n gets super huge, the value of gets closer and closer, but never exceeds, e.

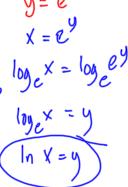
Let's see what impact this has on our Compound Interest equation, and answers our original question.

$$A = P\left(1 + \frac{r}{n}\right)^{n \cdot t}$$


Pause here and make sure you believe this is equivalent...
$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

Again, pause... same thing?


Now if *n* gets super huge, $\left(1 + \frac{1}{\left(\frac{n}{r}\right)}\right)^n$ approaches *e*, and our formula becomes $A = P \cdot e^{r \cdot t}$


Ex#1: You invest \$200 in an account that pays 4.2% annual interest, but you don't know how often it is compounded. What is the most money you could possibly have at the end of 5 years?

a) Complete the table and graph y = f(x)

х	f(x)
-1	
0	
1	
2	

b) On the same axes, graph the inverse. Find the equation of the inverse.

c)
$$e^{2\ln 3}$$

$$e^{2\ln 3}$$

$$e^{2\ln 3}$$

$$e^{2\ln 3}$$

Ex#4: Solve each equation.

a)
$$\frac{2e^{x}}{2} = \frac{38}{2}$$
 $e^{x} = 19$
 19
 19
 19
 19
 19
 19
 19

b)
$$\ln e^{x+8} = 12$$

 $X = 12$
 $X = 4$

c)
$$2e^{x-4} + 8 = 12$$

 $2e^{x-4} = 4$
 $e^{x-4} = 2$
 $1ne^{x-4} = 1n2$
 $x-4 = 1n2$
 $x=1n2+4$
 $x=1,69$

d)
$$5\log_e(x-4)+3=38$$

 $5(\ln(x-4)+3=38$
 $6(\ln(x-4)+3=38$
 $6(\ln(x-4)+3=38)$
 $6(\ln(x-4)+3=38)$

